MusimKedua E1 - Raja Iblis Berteriak ke Sasazuka - Bstation. Raja Iblis Nyambi! Musim Kedua. Meskipun Raja Iblis dan Pahlawan saling bermusuhan di Ente Isla, di dunia Tokyo modern, Masao Maou dan Emi Yuza saling bekerja berdampingan. Dengan semua anggota dari Kastil Iblis, Chiho, seorang siswi SMA yang sedang jatuh cinta, dan yang lainnya, dia
Operator Python Operator adalah konstruksi yang dapat memanipulasi nilai dari operan. Sebagai contoh operasi 3 + 2 = 5. Disini 3 dan 2 adalah operan dan + adalah operator. Bahasa pemrograman Python mendukung berbagai macam operator, diantaranya Operator Aritmatika Arithmetic Operators Operator Perbandingan Comparison Relational Operators Operator Penugasan Assignment Operators Operator Logika Logical Operators Operator Bitwise Bitwise Operators Operator Keanggotaan Membership Operators Operator Identitas Identity Operators Operator Aritmatika Operator Contoh Penjelasan Penjumlahan + 1 + 3 = 4 Menjumlahkan nilai dari masing-masing operan atau bilangan Pengurangan - 4 - 1 = 3 Mengurangi nilai operan di sebelah kiri menggunakan operan di sebelah kanan Perkalian * 2 * 4 = 8 Mengalikan operan/bilangan Pembagian / 10 / 5 = 2 Untuk membagi operan di sebelah kiri menggunakan operan di sebelah kanan Sisa Bagi % 11 % 2 = 1 Mendapatkan sisa pembagian dari operan di sebelah kiri operator ketika dibagi oleh operan di sebelah kanan Pangkat ** 8 ** 2 = 64 Memangkatkan operan disebelah kiri operator dengan operan di sebelah kanan operator Pembagian Bulat // 10 // 3 = 3 Sama seperti pembagian. Hanya saja angka dibelakang koma dihilangkan Dibawah ini adalah contoh penggunaan Operator Aritmatika dalam bahasa pemrograman Python OPERATOR ARITMATIKA Penjumlahan print13 + 2 apel = 7 jeruk = 9 buah = apel + jeruk printbuah Pengurangan hutang = 10000 bayar = 5000 sisaHutang = hutang - bayar print"Sisa hutang Anda adalah ", sisaHutang Perkalian panjang = 15 lebar = 8 luas = panjang * lebar printluas Pembagian kue = 16 anak = 4 kuePerAnak = kue / anak print"Setiap anak akan mendapatkan bagian kue sebanyak ", kuePerAnak Sisa Bagi / Modulus bilangan1 = 14 bilangan2 = 5 hasil = bilangan1 % bilangan2 print"Sisa bagi dari bilangan ", bilangan1, " dan ", bilangan2, " adalah ", hasil Pangkat bilangan3 = 8 bilangan4 = 2 hasilPangkat = bilangan3 ** bilangan4 printhasilPangkat Pembagian Bulat print10//3 10 dibagi 3 adalah Karena dibulatkan maka akan menghasilkan nilai 3 Operator Perbandingan Operator perbandingan comparison operators digunakan untuk membandingkan suatu nilai dari masing-masing operan. Operator Contoh Penjelasan Sama dengan == 1 == 1 bernilai True Jika masing-masing operan memiliki nilai yang sama, maka kondisi bernilai benar atau True. Tidak sama dengan != 2 != 2 bernilai False Akan menghasilkan nilai kebalikan dari kondisi sebenarnya. Tidak sama dengan 2 2 bernilai False Akan menghasilkan nilai kebalikan dari kondisi sebenarnya. Lebih besar dari > 5 > 3 bernilai True Jika nilai operan kiri lebih besar dari nilai operan kanan, maka kondisi menjadi benar. Lebih kecil dari = 5 >= 3 bernilai True Jika nilai operan kiri lebih besar dari nilai operan kanan, atau sama, maka kondisi menjadi benar. Lebih kecil atau sama dengan 3 Hasilnya akan bernilai True karena lima lebih besar dari tiga LEBIH KECIL DARI print5 = 3 Hasilnya akan bernilai True karena lima lebih besar dari sama dengan tiga LEBIH KECIL DARI SAMA DENGAN print5 >, , >= Perbandingan , ==, != Perbandingan =, %=, /=, //=, -=, +=, *=, **= Penugasan is, is not Identitas in, not in Membership Keanggotaan not, or, and Logika Edit tutorial ini
dengannilai t-statistik PP -9.980722 yang lebih kecil daripada nilai kritis MacKinnon yang sebesar -2.903566 sehingga sudah tidak terdapat lagi unit root atau pada tingkat ini sudah stasioner. Sama hasilnya pada variabel LNGDPUS pada I(1) memiliki nilai t-stat PP sebesar -6.274174, nilai tersebut lebih besar dari pada nilai kritis MacKinnon Statistika merupakan materi penting untuk di perdalam mengingat soal tentang materi ini sangat dominan menghiasi soal-soal Ujian Nasional maupun SBMPTN. Soal dan Pembahasan Statistika menjadi sesuatu yang sangat penting juga, karena untuk mendapat gambaran yang jelas tentang soal-soal UN, SBMPTN, maupun Ujian Mandiri membutuhkan ilustrasi yang jelas dan nyata. Hal ini bisa terwujud melalui bedah soal-soal yang pernah diujikan. Soal dan Pembahasan Statistika 1. Statistika UTBK 2019 MSDiketahui data $3,\ x,\ 6,\ 6, 7, 8, y$, dengan $x 7$. Persamaan menjadi $6 = -a - 7 - 2a - 6 + 2b - 14$ $6 = 7 - a + 12 - 2a + 31 - 3a - 14$ $6a = 30$ $a = 5$ $2b = 31 - 3a$ $2b = 31 - $2b = 16$ $b = 8$ $a + b - 1 = 5 + 8 - 1 = 12$ jawab C. 4. Statistika UTBK 2019 MSNilai matematika 7 orang siswa setelah diurutkan adalah sebagai berikut $a,b,c,7,d,d,9$. Jika nilai rata-rata semua siswa adalah 7 dan rata-rata 3 siswa terendah adalah $\dfrac{17}{3}$, maka rata-rata 3 nilai terbaik adalah . . . . $A.\ 8$ $B.\ \dfrac{25}{3}$ $C.\ \dfrac{26}{3}$ $D.\ 9$ $E.\ \dfrac{28}{3}$Rata-rata 3 nilai terendah $\dfrac{a + b + c}{3} = \dfrac{17}{3}$ $a + b + c = 17$ $\dfrac{a + b + c + 7 + 2d + 9}{7} = 7$ $\dfrac{17 + 7 + 2d + 9}{7} = 7$ $2d = 49 - 33$ $2d = 16$ $d = 8$ Rata-rata 3 nilai terbaik $\bar{x} = \dfrac{8 + 8 + 9}{3} = \dfrac{25}{3}$ jawab B. 5. Statistika SIMAK UI 2019 MDasDiketahui $a,\ b,\ c,\ d,\ dan\ e$ adalah bilangan bulat positif dengan $e = 3a,\ b = a + 1,\ a = c - 5$ dan $d = e - 2$. Jika rata-rata kelima bilangan tersebut adalah $17$, maka . . . . 1. jangkauan antarkuartilnya adalah $14$ 2. kuartil pertamanya adalah $11$ 3. jangkauannya adalah $17$ 4. mediannya mempunyai 2 faktor prima$b = a + 1$ $c = a + 5$ $d = 3a - 2$ $e = 3a$ $\dfrac{a + b + c + d + e}{5} = 17$ $\dfrac{a + a + 1 + a + 5 + 3a - 2 + 3a}{5} = 17$ $9a + 4 = 85$ $9a = 81$ $a = 9$ $b = 10$ $c = 14$ $d = 25$ $e = 27$ Data tersusun $9,\ 10,\ 14,\ 25,\ 27$ $Q_1 = \dfrac{9 + 10}{2} = 9,5$ $Q_2 = 14$ $Q_3 = \dfrac{25 + 27}{2} = 26$ Jangkauan antar kuartil $H = Q_3 - Q_1$ $H = 26 - 9,5 = 16,5$ Pernyataan 1 salah. Kuartil pertama $Q_1 = 9,5$ Pernyataan 2 salah. Jangkauan $x = 27 - 9 = 18$ Pernyataan 3 salah. Median $Q_2 = 14$ Faktor = 1, 2, 7, 14. Mediannya mempunyai dua faktor prima. Pernyataan 4 benar. jawab D. 6. Statistika UM UGM 2019 MDasJika rata-rata dari $a,b,c$ dan $a^2,b^2,c^2$ berturut-turut adalah 2 dan 4, maka rata-rata dari $ab,bc,ac$ adalah . . . . $A.\ \dfrac{10}{3}$ $B.\ \dfrac{11}{3}$ $C.\ 4$ $D.\ \dfrac{13}{3}$ $E.\ \dfrac{14}{3}$$\dfrac{a + b + c}{3} = 2$ $a + b + c = 6$ . . . . * $\dfrac{a^2 + b^2 + c^2}{3} = 4$ $a^2 + b^2 + c^2 = 12$ . . . . ** $a + b + c^2 = a^2 + b^2 + c^2 + 2ab + bc + ac$ $6^2 = 12 + 2ab + bc + ac$ $36 = 12 + 2ab + bc + ac$ $24 = 2ab + bc + ac$ $ab + bc + ac = 12$ $\dfrac{ab + bc + ac}{3} = 4$ $rata-rata = 4$ jawab C. 7. Statistika SBMPTN 2018 MDasSebelas siswa mengikuti suatu tes dan median nilai tes mereka adalah 91. Jika sudah diketahui tiga siswa memperoleh nilai 100, satu siswa memperoleh nilai 96, tiga siswa memperoleh nilai 90 serta dua siswa memperoleh nilai 86, maka nilai dua siswa yang belum diketahui yang paling mungkin adalah . . . . $A.\ 100\ dan\ 100$ $B.\ 100\ dan\ 90$ $C.\ 95\ dan\ 90$ $D.\ 93\ dan\ 91$ $E.\ 91\ dan\ 86$Karena jumlah datanya 11 ganjil, maka median adalah data ke 6. Jadi nilai tengah = 91. Urutan nilai 86, 86, 90, 90, 90, 91, ..., 96, 100, 100, 100. Kedua nilai tersebut adalah 91 dan satu lagi harus lebih besar dari 91. Jawaban yang mungkin adalah opsi D. Jawab D. 8. Statistika SBMPTN 2017 MDasDiketahui median dan rata-rata berat badan 5 balita adalah sama. Setelah ditambahkan satu data berat badan balita, rata-ratanya meningkat 1 kg, sedangkan mediannya tetap. Jika 6 data berat badan tersebut diurutkan dari yang paling ringan ke yang paling berat, maka selisih berat badan antara balita terakhir yang ditambahkan dan balita di urutan ke-4 adalah . . . . kg. $A\ 4$ $B\ \dfrac{9}{2}$ $C\ 5$ $D\ 6$ $E\ \dfrac{13}{2}$Misalkan berat badan balita setelah diurutkan adalah a, b, c, d, e β median = c. $\overline{x} = \dfrac{a + b + c + d + e}{5}$, Karena rata-rata = median, maka $c = \dfrac{a + b + c + d + e}{5}$ $5c = {a + b + c + d + e}$ . . . . 1 Satu data berat badan ditambahkan dan rata-rata meningkat 1 kg. $c + 1 = \dfrac{a + b + c + d + e + f}{6}$ $6c + 6 = a + b + c + d + e + f$ . . . . 2 Dari persamaan 1 dan 2 $6c + 6 = 5c + f$ $c + 6 = f$ . . . . 3 Setelah satu data ditambahkan median tetap, berarti $\dfrac{c + d}{2} = c$ $c + d = 2c$ $d = c$ . . . . 4 Maka selisih berat badan balita terakhir dan balita di urutan ke-4 = $f - d$ $= c + 6 - c $ $= 6$ jawab D. 9. Statistika SBMPTN 2016 MDasRata-rata nilai ujian matematika siswa di suatu kelas dengan 50 siswa tetap sama meskipun nilai terendah dan nilai tertinggi dikeluarkan. Jumlah nilai-nilai tersebut adalah 350. Jika data nilai-nilai ujian matematika tersebut merupakan bilangan asli yang tidak lebih besar daripada 10, maka jangkauan data nilai yang mungkin ada sebanyak. . . . $A\ 1$ $B\ 2$ $C\ 3$ $D\ 4$ $E\ 5$$\overline{x} = \dfrac{350}{50} = 7$ Jika data tertinggi dan terendah dikeluarkan, rata-rata tetap sama. Misalkan data terendah R dan data tertinggi T. $\dfrac{350 - R - T}{48} = 7$ $350 - R - T = 7\ .\ 48$ $350 - R - T = 336$ $350 - 336 = R + T$ $R + T = 14$ Jika nilai tertinggi maksimum 10, maka; $R = 4$ dan $T = 10$ β Jangkauan = 6 $R = 5$ dan $T = 9$ β Jangkauan = 4 $R = 6$ dan $T = 8$ β Jangkauan = 2 Jadi ada 3 jangkaun data yang mungkin. jawab C. 10. Statistika UNBK 2019 Mtk IPAPerhatikan histogram berikut. Kuartil $ke-2\ Q_2$ dari data berat badan yang ditunjukkan pada histogram di atas adalah . . . . $A.\ 50,5\ kg$ $B.\ 51,5\ kg$ $C.\ 52,5\ kg$ $D.\ 53,5\ kg$ $E.\ 54,5\ kg$Model soal seperti ini lebih mudah diselesaikan dengan cara berikut, tidak perlu dirubah ke dalam bentuk tabel. Merubah ke dalam bentuk tabel akan membutuhkan waktu yang tidak sedikit. Hitung jumlah seluruh data atau frekuensi ! $n = 2 + 6 + 13 + 10 + 9 + 7 + 3 = 50$ Median terletak pada data ke $\dfrac12n$ $\dfrac12n = 25 β Q_2$ terletak pada data atau frekuensi $ke - 25$. Hitung data atau frekuensi $ke - 25$ dari sebelah kiri 2 + 6 + 13 + 4 = 25, maka data $ke - 25$ terletak pada batang ke empat dari sebelah kiri. Untuk menghitung panjang kelas, kurangkan titik tengah interval kelas sebelah kanan dengan titik tengah interval kelas yang di sebelah kirinya. Contoh $42 - 37 = 5$. Sehingga panjang kelas $c = 5$. Karena $Q_2$ terletak pada interval kelas dengan titik tengah 52 dengan panjang kelas 5, kita bisa menentukan bahwa interval kelas $Q_2$ adalah $50 - 54$. $L_2 = 50 - 0,5 = 49,5$ β Kurangkan nilai bawah interval kelas dengan $0,5$. $fk_2 = 2 + 6 + 13 = 21$ β Jumlahkan seluruh frekwensi kelas yang ada disebelah kiri kelas $Q_2$. $f_2 = 10$ β Frekwensi kelas $Q_2$. $c = 54,5 - 49,5 = 5$ β Tambahkan nilai atas kelas dengan $0,5$ dan kurangkan nilai bawah kelas dengan $0,5$, kemudian kurangkan untuk mendapatkan panjang kelas $c$. $Q_2 = L_2 + \dfrac{\dfrac12n - fk_2}{f_2}.c$ $Q_2 = 49,5 + \dfrac{25 - 21}{10}.5$ $Q_2 = 49,5 + \dfrac{4}{10}.5$ $Q_2 = 49,5 + 2$ $Q_2 = 51,5$ jawab B. 11. Statistika UNBK 2019 Mtk IPATabel berikut menyatakan hasil penilaian guru terhadap kemampuan pelajaran fisika dari 70 orang siswa. Nilai Frekuensi $34 - 38$ 5 $39 - 43$ 9 $44 - 48$ 14 $49 - 53$ 20 $54 - 58$ 16 $49 - 63$ 6 Modus dari data pada tabel tersebut adalah . . . . $A.\ 49,5$ $B.\ 50,5$ $C.\ 51,5$ $D.\ 52,5$ $E.\ 53,5$Untuk menentukan modus, lihat kelas dengan frekuensi tertinggi. Terlihat dari soal bahwa frekuensi tertinggi adalah 20 pada interval kelas $49 - 53$. Berarti Modus terletak pada interval kelas $49 - 53$. Nilai Frekuensi $34 - 38$ 5 $39 - 43$ 9 $44 - 48$ 14 $49 - 53$ 20 $54 - 58$ 16 $49 - 63$ 6 $L_o = 49 - 0,5 = 48,5$ β Kurangkan nilai bawah interval kelas modus dengan $0,5$. $d_1 = 20 - 14 = 6$ β Kurangkan frekuensi kelas modus dengan frekuensi kelas di atasnya hijau dikurang kuning . $d_2 = 20 - 16 = 4$ β Kurangkan frekuensi kelas modus dengan frekuensi kelas di bawahnya hijau dikurang biru. $c = 53,5 - 48,5 = 5$ β tambahkan nilai atas kelas modus dengan $0,5$ dan kurangkan nilai bawah kelas modus dengan $0,5$, setelah itu lakukan pengurangan untuk mendapatkan panjang kelas $c$. $M_o = L_o + \dfrac{d_1}{d_1 + d_2}.c$ $M_o = 48,5 + \dfrac{6}{6 + 4}.5$ $M_o = 48,5 + \dfrac{6}{10}.5$ $M_o = 48,5 + 3$ $M_o = 51,5$ jawab C. 12. Statistika UNBK 2019 Mtk IPADiketahui data $7, 6, 2, p, 3, 4.$ Jika rata-rata dari data tersebut sama dengan mediannya, banyak nilai p yang mungkin untuk p bilangan asli adalah . . . . $A.\ 1$ $B.\ 2$ $C.\ 3$ $D.\ 4$ $E.\ 5$Susunan yang mungkin A. p, 2, 3, 4, 6, 7 atau 2, p, 3, 4, 6, 7 akan menghasilkan nilai p yang sama. $\dfrac{p + 22}{6} = \dfrac{3 + 4}{2}$ $p + 22 = 6.\dfrac72$ $p + 22 = 21$ $p = -1 β$ tidak memenuhi syarat. B. 2, 3, p, 4, 6, 7 atau 2, 3, 4, p, 6, 7 akan menghasilkan nilai p yang sama. $\dfrac{p + 22}{6} = \dfrac{p + 4}{2}$ $p + 22 = 6.\dfrac{p + 4}{2}$ $p + 22 = 3p + 4$ $p + 22 = 3p + 12$ $2p = 10$ $p = 5$ C. 2, 3, 4, 6, p, 7 atau 2, 3, 4, 6, 7, p akan menghasilkan nilai p yang sama. $\dfrac{p + 22}{6} = \dfrac{4 + 6}{2}$ $\dfrac{p + 22}{6} = 5$ $p + 22 = 30$ $p = 8$ Nilai p yang memenuhi syarat ada dua buah yaitu $p = 5\ dan\ p = 8$. jawab B. 13. Statistika UNBK 2019 Mtk IPSDiagram lingkaran berikut menunjukkan banyak warga dalam pemilihan kepala desa di empat daerah. Jika total warga mengikuti pemilihan itu, banyak warga yang memilih di daerah D adalah . . . . $A.\ 270\ warga$ $B.\ 300\ warga$ $C.\ 330\ warga$ $D.\ 360\ warga$ $E.\ 390\ warga$Kita hitung besar sudut D terlebih dahulu ! $\angle D = 360^o - 90^o + 135^o + 15^o$ $\angle D = 360^o - 240^o$ $\angle D = 120^o$ Banyak warga yang memilih di daerah $D = \dfrac{\angle D}{360^o}\ \times\ $= \dfrac{120^o}{360^o}\ \times\ $= \dfrac13\ \times $= 360\ warga$ jawab D. 14. Statistika UNBK Mtk IPSTabel berikut berikut menyajikan data nilai ulangan Bahasa Indonesia siswa kelas XII. Nilai Frekuensi $40 - 44$ 2 $45 - 49$ 8 $50 - 54$ 15 $55 - 59$ 10 $60 - 64$ 5 $65 - 69$ 10 Rata-rata nilai ulangan Bahasa Indonesia siswa kelas tersebut adalah . . . . $A.\ 53,2$ $B.\ 55,8$ $C.\ 56,3$ $D.\ 56,8$ $E.\ 58,2$ Nilai $f$ $x_i$ $d = x_i - \overline{x}$ $ $40 - 44$ 2 42 $-10$ $-20$ $45 - 49$ 8 47 $-5$ $-40$ $50 - 54$ 15 52 0 0 $55 - 59$ 10 57 5 50 $60 - 64$ 5 62 10 50 $65 - 69$ 10 67 15 150 $\sum f = 50$ $\sum fd = 190$ Rata-rata sementara $\overline{x_s}$ merupakan titik tengah $x_i$ dari kelas dengan frekwensi tertinggi. Dari tabel, frekwensi tertinggi adalah 15, sehingga rata-rata sementara adalah $\overline{x_s} = 52$ $\overline{x} = \overline{x_s} + \dfrac{\sum\ f}$ $\overline{x} = 52 + \dfrac{190}{50}$ $\overline{x} = 52 + 3,8$ $\overline{x} = 55,8$ jawab B. 15. Statistika UNBK Mtk IPSHistogram berikut menyatakan data nilai tes peserta didik kelas XI. Median data tersebut adalah . . . . $A.\ 70,5$ $B.\ 71,2$ $C.\ 71,5$ $D.\ 75,5$ $E.\ 79,5$Soal seperti ini sangat mudah untuk menghitungnya, tidak perlu dikonversi ke dalam bentuk tabel. Karena kalau dikonversi ke bentuk tabel akan memakan waktu dan makin ruwet. Banyak data $n$ Untuk menghitung banyak data $n$, jumlahkan seluruh frekuensi. $n = 5 + 4 + 5 + 10 + 6 = 30$ Median terletak pada data ke $\dfrac12n$ jika dihitung dari sebelah kiri hitung frekuensi. $\dfrac12n = \ = 15$ Kelas median terletak pada data $ke-15$ jika dihitung dari sebelah kiri. Dengan menghitung frekuensi dari sebelah kiri, kita bisa menentukan letak data $ke - 15$. Jumlahkan frekuensinya 5 + 4 + 5 + 1 = 15, data $ke - 15$ terletak pada batang ke empat dari kiri, yaitu batang dengan frekuensi 10. Dengan demikian kelas median adalah batang dengan frekwensi 10. $f_{k2} = 5 + 4 + 5 = 14$ β Jumlahkan seluruh frekuensi yang ada disebelah kiri kelas median batang dengan frekwensi 10. $f_2 = 10$ β Frekuensi kelas Median. $L_2 = 69,5$ β Tepi bawah kelas median, tidak perlu repot-repot lagi mencarinya karena di soal sudah diketahui tepi bawah kelas median $= 69,5$ dan tepi atas kelas median $= 79,5$. $c = 79,5 - 69,5 = 10$ β Untuk menghitung panjang kelas tinggal mengurangkan tepi atas kelas dengan tepi bawah kelas. $Me = L_2 + \dfrac{\dfrac12n - f_{k2}}{f_2}.c$ $Me = 69,5 + \dfrac{15 - 14}{10}.10$ $Me = 69,5 + 1$ $Me = 70,5$ jawab A. 16. Statistika UNBK Mtk IPSDiketahui data $2, 6, 7, 1, 4$. Varians data tersebut adalah . . . . $A.\ 5,4$ $B.\ 5,8$ $C.\ 6,0$ $D.\ 6,2$ $E.\ 6,4$$\overline{x} = \dfrac{2 + 6 + 7 + 1 + 4}{5} = \dfrac{20}{5} = 4$ $R = \dfrac 1n\displaystyle \sum_{i\ =\ 1}^{n}\leftx_i - \overline{x} \right^2$ $= \dfrac152 - 4^2 + 6 - 4^2 + 7 - 4^2 + 1 - 4^2 + 4 - 4^2$ $= \dfrac154 + 4 + 9 + 9 + 0$ $= \dfrac{26}{5}$ $= 5,2$ jawab - 17. Statistika UNBK 2018 Mtk IPADiketahui data sebagai berikut Nilai Frekuensi $66 - 70$ 8 $71 - 75$ 10 $76 - 80$ 12 $81 - 85$ 18 $86 - 90$ 15 $91 - 95$ 13 $96 - 100$ 4 Jumlah 80 Kuartil bawah $Q_1$ dari data tersebut adalah . . . . A. 75,83 B. 76,83 C. 76,33 D. 77,83 E. 78,33Menentukan kelas $Q_1$ Jumlah data $n = 80$, sudah diketahui dari soal. $Q_1$ terletak pada data ke $\dfrac14n$ $\dfrac{1}{4}n = \dfrac{1}{4}.80 = 20$ $Q_1$ terletak pada data atau frekuensi ke 20 dihitung dari atas. Kita bisa menentukan letak data ke 20 dengan menghitung 8 + 10 + 2 = 20, dengan demikian data ke 20 terletak pada baris ketiga dari atas dengan interval kelas $76 - 80$. $L_1 = 76 - 0,5 = 75,5$ β tepi bawah kelas $Q_1$, didapat dengan mengurangkan nilai bawah kelas dengan $0,5$. $fk1 = 8 + 10 = 18$ β Jumlah semua frekuensi di atas frekuensi kelas $Q_1$. $f1 = 12$ β frekuensi kelas $Q_1$ $c = 80,5 - 75,5 = 5$ β panjang kelas, didapat dengan mengurangkan tepi atas kelas dengan tepi bawah kelas. Tepi atas kelas adalah nilai atas kelas ditambah dengan $0,5$ dan tepi bawah kelas adalah nilai bawah kelas dikurangi $0,5$. $\displaystyle Q_1 = L_1 + \left\dfrac{\dfrac{1}{4}n - fk1}{f1}\right.c$ $\displaystyle Q_1 = 75,5 + \dfrac{20 - 18}{12}.5$ $\displaystyle Q_1 = 75,5 + \dfrac{2}{12}.5$ $Q_1 = 75,5 + 0,83$ $Q_1 = 76,33$ jawab C. 18. Statistika UNBK 2018 Mtk IPAPerolehan nilai tes siswa suatu kelas disajikan pada histogram berikut. Nilai tes siswa terbanyak adalah . . . . A. 74,75 B. 75,50 C. 75,75 D. 76,50 E. 77,50Karena yang ditanya adalah nilai tes siswa terbanyak, maka yang akan kita cari adalah modus. Dengan melihat histogram, kelas modus adalah batang keempat dari sebelah kiri dengan frekuensi 15. $L_o = 74,5$ β tepi bawah kelas modus, dari soal sudah diketahui bahwa tepi bawah kelas modus adalah $74,5$ dan tepi atas kelas modus adalah $79,5$. $d1 = 15 - 9 = 6$ β frekuensi kelas modus dikurangi frekuensi kelas disebelah kiri yang menempel kelas modus. $d2 = 15 - 6 = 9$ β frekuensi kelas modus dikurangi frekuensi kelas sebelah kanan yang menempel kelas modus. $c = 79,5 - 74,5 = 5$ β panjang kelas, didapat dengan mengurangkan tepi atas kelas dengan tepi bawah kelas. $\displaystyle Mo = L_o + \dfrac{d1}{d1 + d2}.c$ $\displaystyle = 74,5 + \dfrac{6}{6 + 9}.5$ $\displaystyle = 74,5 + \dfrac{6}{15}.5$ $= 74,5 + 2$ $= 76,50$ jawab D. 19. Statistika UNBK 2018 Mtk IPSData nilai ujian matematika di suatu kelas disajikan pada tabel distribusi frekuensi kumulatif "kurang dari". Banyak siswa yang memperoleh nilai 40 - 59 adalah . . . . Nilai Frekuensi Kumulatif $\leq 19,5$ 3 $\leq 39,5$ 10 $\leq 59,5$ 18 $\leq 79,5$ 26 $\leq 99,5$ 30 $A.\ 7$ $B.\ 8$ $C.\ 10$ $D.\ 18$ $E.\ 26$Tabel distribusi frekwensinya kumulatif kita kembalikan ke tabel biasa seperti berikut Nilai Frekuensi $ 0 - 19 $ 3 $20 - 39$ 7 $40 - 59$ 8 $60 - 79$ 8 $80 - 99$ 4 Berarti banyak siswa yang memperoleh nilai $40 - 59$ adalah 8 orang. jawab B. 20. Statistika UNBK 2018 Mtk IPSTabel berat badan sekelompok siswa. Nilai Frekuensi $31 - 36$ 4 $37 - 42$ 6 $43 - 48$ 10 $49 - 54$ 14 $55 - 60$ 8 $61 - 66$ 5 $67 - 72$ 2 Modus dari berat badan siswa adalah . . . . $A.\ 49,06\ kg$ $B.\ 50,20\ kg$ $C.\ 50,40\ kg$ $D.\ 51,33\ kg$ $E.\ 51,83\ kg$Untuk menentukan kelas modus, lihat frekuensi tertinggi. Dari tabel terlihat bahwa frekuensi tertinggi adalah 14. Berarti kelas modus adalah baris keempat dengan interval kelas $49 - 54$. $L_o = 49 - 0,5 = 48,5$ β Tepi bawah kelas modus, yaitu nilai bawah kelas modus dikurangi $0,5$. $d_1 = 14 - 10 = 4$ β Frekuensi kelas modus dikurangi dengan frekuensi kelas di atasnya. $d_2 = 14 - 8 = 6$ β Frekuensi kelas modus dikurangi dengan frekuensi kelas di bawahnya. $c = 54,5 - 48,5 = 6$ β Panjang kelas, yaitu tepi atas kelas dikurangi tepi bawah kelas. $M_o = L_o + \dfrac{d_1}{d_1 + d_2}.c$ $= 48,5 + \dfrac{4}{4 + 6}.6$ $= 48,5 + \dfrac{4}{10}.6$ $= 48,5 + 2,4$ $= 50,9$ Tidak ada jawaban. 21. Statistika UNBK 2018 Mtk IPSPerhatikan berat badan dari kelompok siswa! Nilai Frekuensi $30 - 34$ 3 $35 - 39$ 4 $40 - 44$ 6 $45 - 49$ 11 $50 - 54$ 8 $55 - 59$ 5 $60 - 64$ 3 Kuartil bawah dari berat badan siswa adalah . . . . $A.\ 37,00\ kg$ $B.\ 42,00\ kg$ $C.\ 45,50\ kg$ $D.\ 53,25\ kg$ $E.\ 53,78\ kg$Hitung jumlah data $n$ dengan menjumlahkan seluruh frekuensi. $n = \sum f = 40$ Kuartil bawah atau $Q_1$ terletak pada data ke $\dfrac14n$. $\dfrac{1}{4}n = \dfrac{1}{4}.40 = 10$, berarti $Q_1$ terletak pada data ke 10 dihitung dari atas. Dengan menghitung dari atas 3 + 4 + 3 = 10, didapat kuartil bawah $Q_1$ terletak pada baris ketiga dari atas. Berarti kuartil bawah terletak pada interval kelas 40 - 44. $L_1 = 40 - 0,5 = 39,5$ $f_{k1} = 7$ β jumlah frekuensi yang ada di atas kelas kuartil bawah. Dalam soal ini 3 + 4 = 7. $f_1 = 6$ β Frekuensi kelas kuartil bawah. $c = 34,5 - 29,5 = 5$ β panjang kelas. $Q_1 = L_1 + \dfrac{\dfrac{1}{4}n - f_{k1}}{f_1}.c$ $= 39,5 + \dfrac{\dfrac{1}{4}.40 - 7}{6}.5$ $= 39,5 + \dfrac{1}{2}.5$ $= 39,5 + 2,5$ $= 42,00$ jawab B. 22. Statistika UNBK 2018 Mtk IPSSimpangan rata-rata dari data 6,5,7,5,6,8,7,6,6,7,4,5 adalah . . . . $A.\ \dfrac{7}{3}$ $B.\ \dfrac{5}{3}$ $C.\ \dfrac{7}{5}$ $D.\ \dfrac{3}{5}$ $E.\ \dfrac{5}{6}$$\overline{x} = \dfrac{4 + + + + 8}{12}$ $\overline{x} = \dfrac{72}{12} = 6$ $SR = \dfrac{\displaystyle \sum_{i\ =\ 1}^{n}x_i - \overline{x}}{n}$ $= \dfrac{4 - 6 + 3.5 - 6 + 4.6 - 6 + 3.6 - 7 + 8 - 6}{12}$ $= \dfrac{2 + 3 + 0 + 3 + 2}{12}$ $= \dfrac{10}{12}$ $= \dfrac{5}{6}$ jawab E. 23. Statistika UNBK 2017 Mtk IPAModus dari histogram berikut adalah . . . . A. 42,17 B. 43,17 C. 43,50 D. 43,83 E. 45,50Modus adalah nilai yang paling sering muncul. Nilai yang paling sering muncul ditunjukkan oleh batang ketiga dari sebelah kiri dengan frekuensi 9. Perhatikan titik tengah interval kelas modus adalah 43. Panjang kelas bisa didapat dengan mengurangkan dua titik tengah interval kelas yang berdekatan, contoh $38 - 33 = 5$. Dengan demikian panjang kelas $c = 5$. Jika panjang kelas $c = 5$ dan titik tengah interval kelas modus adalah 43, maka dengan mudah dapat ditentukan interval kelas modus adalah $41 - 45$. $L_o = 41 - 0,5 = 40,5$ β Tepi bawah kelas modus, yaitu nilai bawah kelas modus dikurangi $0,5$. $d_1 = 9 - 7 = 2$ β Frekuensi kelas modus dikurangi frekuensi kelas di sebelah kiri kelas modus frekuensi batang ketiga dari kiri dikurangi batang kedua dari kiri. $d_2 = 9 - 5 = 4$ β Frekuensi kelas modus dikurangi frekuensi kelas disebelah kanan kelas modus frekuensi batang ketiga dikurangi frekuensi batang keempat dari kiri. $c = 5$ β panjang kelas. $M_o = L_o + \dfrac{d_1}{d_1 + d_2}.c$ $= 40,5 + \dfrac{2}{2 + 4}.5$ $= 40,5 + \dfrac53$ $= 40,5 + 1,67$ $= 42,17$ jawab A. 24. Statistika UNBK 2017 Mtk IPAPerhatikan data pada tabel berikut ! Data Frekuensi $45 - 49$ 2 $50 - 54$ 3 $55 - 59$ 3 $60 - 64$ 6 $65 - 69$ 4 $70 - 74$ 2 Kuartil atas dari data pada tabel tersebut adalah . . . . A. 64,5 B. 64,75 C. 65,00 D. 65,50 E. 65,75$n = \sum f = 20$ Kuartil atas $Q_3$ terletak pada data ke $\dfrac34n$. $\dfrac34n = \ = 15$, kuartil atas terletak pada data ke 15 jika dihitung dari atas frekuensi baris pertama. Dengan menghitung frekuensi mulai dari atas yaitu 2 + 3 + 3 + 6 + 1 = 15, terlihat bahwa data ke 15 terletak pada baris kelima dengan interval kelas $65 - 69$. $L_3 = 65 - 0,5 = 64,5$ β Tepi bawah kelas $Q_3$. $\dfrac34n = \ = 15$ $f_{k3} = 2 + 3 + 3 + 6 = 14$ β Jumlah seluruh frekuensi yang ada di atas kelas $Q_3$. $f_3 = 4$ β Frekuensi kelas $Q_3$. $c = 69,5 - 64,5 5$ β panjang kelas. $Q_3 = L_3 + \dfrac{\dfrac34n - f_{k3}}{f_3}.c$ $= 64,5 + \dfrac{15 - 14}{4}.5$ $= 64,5 + \ $= 64,5 + 1,25$ $= 65,75$ jawab E. 25. Statistika UNBK 2017 Mtk IPSNilai hasil tes penerimaan calon pegawai di suatu perusahaan dinyatakan dalam bentuk tabel berikut. Nilai Banyak Calon Pegawai $5,0$ 9 $5,5$ 6 $6,0$ 10 $6,5$ 11 $7,0$ 8 $7,5$ 3 $8,0$ 1 8,5 2 Calon yang lulus dapat diterima menjadi pegawai adalah mereka yang mendapat nilai lebih besar sama dengan $6,5$. Persentase calon pegawai yang diterima adalah . . . . A. 65% B. 50% C. 40% D. 35% E. 25%Jumlah seluruh calon pegawai adalah 9 + 6 + 10 + 11 + 8 + 3 + 1 + 2 = 50. Jumlah pegawai yang memiliki nilai 6,5 ke atas adalah 11 + 8 + 3 + 1 + 2 = 25. Persentase calon pegawai yang diterima $P = \dfrac{25}{50}.100\%$ $= 50\%$ jawab B. 26. Statistika UNBK 2017 Mtk IPSHistogram berikut menyajikan data tinggi mistar yang dapat dilalui oleh siswa suatu SMA pada kegiatan olahraga lompat tinggi. Kuartil bawah data tersebut adalah . . . . A. 6,5 B. 6,9 C. 7,1 D. 7,4 E. 7,5Hitung $n$ dengan menjumlahkan seluruh frekuensi. $n = \sum f = 40$ $\dfrac14n = \ = 10$ $Q_1$ terletak pada data ke $\dfrac14n$ dihitung dari batang paling kiri. Dengan demikian $Q_1$ terletak pada data ke 10. Dengan menghitung 3 + 4 + 3 = 10, berarti $Q_1$ terletak pada batang ketiga dari sebelah kiri. Kita bisa menghitung panjang kelas $c$ dengan mengurangkan titik tengah interval kelas yang berdekatan, contoh $17 - 14 = 3$. Karena titik tengah interval kelas $Q_1 = 8$ dan panjang kelas $c = 3$, maka dengan mudah dapat ditentukan interval kelas $Q_1$ adalah $7 - 9$. $L_1 = 7 - 0,5 = 6,5$ $f_{k1} = 3 + 4 = 7$ β Jumlah semua frekuensi disebelah kiri batang $Q_1$. $f_1 = 8$ β Frekuensi kelas/batang $Q_1$. $Q_1 = L_1 + \dfrac{\dfrac14n - f_{k1}}{f_1}.c$ $= 6,5 + \dfrac{10 - 7}{10}.3$ $= 6,5 + \dfrac{9}{10}$ $= 6,5 + 0,9$ $= 7,4$ jawab D. 27. Statistika UNBK 2017 Mtk IPSVarians dari data 8, 7, 10, 12, 9, 4, 6 adalah . . . . A. 2 B. 6 C. 7 D. 21 E. 42Varians V disebut juga ragam R $V = \dfrac1n \displaystyle \sum_{i\ =\ 1}^{n}x_i - \overline{x}^2$ $\overline{x} = \dfrac17.8 + 7 + 10 + 12 + 9 + 4 + 6$ $= \dfrac{56}{7}$ $= 8$ $V = \dfrac17[8 - 8^2 + 7 - 8^2 + 10 - 8^2 +$ $12 - 8^2 + 9 - 8^2 + 4 - 8^2 + 6 - 8^2]$ $= \dfrac17.0 + 1 + 4 + 16 + 1 + 16 + 4$ $= \ $= 6$ jawab B. 28. Statistika UNBK 2016 Mtk IPAKuartil atas dari data pada histogram adalah . . . . A. 74,50 B. 75,25 C. 77,25 D. 78,00 E. 78,50Hitung $n$ dengan menjumlahkan seluruh frekuensi. $n = \sum f = 40$ Kuartil atas $Q_3$ terletak pada data ke $\dfrac34n = \ = 30$ dihitung dari batang paling kiri. Dengan menghitung jumlah frekuensi dari batang paling kiri 6 + 8 + 7 + 9 = 30, letak $Q_3$ adalah batang keempat dari kiri. $L_3 = 69,5$ β Tepi bawah kelas $Q_3$, sudah diketahui pada histogram. $f_{k3} = 6 + 8 + 7 = 21$ β jumlah seluruh frekuensi yang ada di sebelah kiri kelas $Q_3$. $f_3 = 10$ β Frekuensi kelas $Q_3$. $c = 79,5 - 69,5 = 10$ β Tepi atas kelas $Q_3$ dikurangi tepi bawah kelas $Q_3$. $Q_3 = L_3 + \dfrac{\dfrac34n - f_{k3}}{f_3}.c$ $= 69,5 + \dfrac{30 - 21}{10}.10$ $= 69,5 + \dfrac{9}{10}.10$ $= 69,5 + 9$ $= 78,50$ jawab E. 29. Statistika UN 2016 Mtk IPSDiagram berikut menunjukkan 600 peserta ekstrakurikuler di sebuah SMA. Banyak siswa yang mengikuti ekstrakurikuler tenis meja sebanyak . . . . A. 50 siswa B. 75 siswa C. 100 siswa D. 150 siswa E. 180 siswa$\angle E = 360^o - 90^o + 30^o + 60^o + 150^o$ $= 360^o - 330^o$ $= 30^o$ Untuk menghitung jumlah siswa yang mengikuti ekstrakurikuler tenis meja E, cukup dengan membandingkan sudut. $\dfrac{\angle E}{360^o} = \dfrac{E}{600}$ $\dfrac{30^o}{360^o} = \dfrac{E}{600}$ $\dfrac{1}{12} = \dfrac{E}{600}$ $E = \dfrac{600}{12}$ $= 50$ siswa. jawab A. 30. Statistika UN 2016 Mtk IPSDalam suatu kelas terdapat 22 siswa. Guru mengadakan ulangan matematika. Hasil ulangan siswa diperoleh reta-rata 5 dan jangkauan 4. Bila nilai seorang siswa yang paling rendah dan nilai seorang siswa yang paling tinggi tidak disertakan, nilai rata-rata berubah menjadi 4,9. Nilai siswa yang paling rendah dan paling tinggi tersebut berturut-turut adalah . . . . A. 2 dan 6 B. 3 dan 7 C. 4 dan 8 D. 5 dan 9 E. 6 dan 10$\overline{x_o} = 5$ Jumlah seluruh nilai = = 110 Jika nilai tertinggi T dan terendah R dikeluarkan, maka jumlah seluruh nilai menjadi $110 - T - R$ dan jumlah siswa berkurang 2 menjadi 20 siswa. Nilai rata-rata siswa setelah nilai tertinggi dan terendah dikeluarkan bisa dihitung dengan rumus $\overline{x_1} = \dfrac{110 - T - R}{20}$ $4,9 = \dfrac{110 - T - R}{20}$ $4, = 110 - T - R$ $98 = 110 - T - R$ $T + R = 110 - 98$ $T + R = 12$ . . . . * Jangkauan adalah nilai tertinggi T dikurangi nilai terendah R. Dari soal diketahui jangkauan adalah 4, sehingga $T - R = 4$ . . . . ** Eliminasi persamaan * dan ** $T + R = 12$ $T - R = 4$ - + $2T = 16$ $T = 8$ $R = 4$ jawab C. 31. Statistika UN 2016 Mtk IPSTabel berikut merupakan data berat badan 40 siswa. Berat badan kg Frekuensi $34 - 39$ 1 $40 - 45$ 4 $46 - 51$ 6 $52 - 57$ 9 $58 - 63$ 12 $64 - 69$ 5 $70 - 75$ 3 Median $Q_2$ dari data tersebut adalah . . . . A. 83 kg B. 72,5 kg C. 62,5 kg D. 57,5 kg E. 52,5 kg$n = 40 β \dfrac12n = \ = 20$ $Q_2$ terletak pada interval kelas $52 - 57$ $L_2 = 52 - 0,5 = 51,5$ $f_{k2} = 1 + 4 + 6 = 11$ $f_2 = 9$ $c = 57,5 - 51,5 = 6$ $Q_2 = L_2 + \dfrac{\dfrac12n - f_{k2}}{f_2}.c$ $= 51,5 + \dfrac{20 - 11}{9}.6$ $= 51,5 + \ $= 51,5 + 6$ $= 57,5$ jawab D. 32. Statistika UN 2016 Mtk IPSSimpangan rata-rata data 9, 3, 7, 8, 4, 5, 4, 8 adalah . . . . $A.\ 0$ $B.\ \sqrt{2}$ $C.\ 2$ $D.\ \sqrt{6}$ $E.\ 6$Data setelah diurutkan 3, 4, 4, 5, 7, 8, 8, 9 $\overline{x} = \dfrac{3 + + 5 + 7 + + 9}{8}$ $= \dfrac{48}{8}$ $= 6$ $SR = \dfrac1n \displaystyle \sum_{i\ =\ 1}^{n} \bigrx_i - \overline{x}\Bigr$ $= \dfrac18.3 - 6 + 2.4 - 6 + 5 - 6 + 7 - 6 +$ $2.8 - 6 + 9 - 6$ $= \dfrac18.3 + + 1 + 1 + + 3$ $= \dfrac18.3 + 4 + 1 + 1 + 4 + 3$ $= \dfrac18.16$ $= 2$ jawab C. 33. Statistika SPMB 2004 MDasData berikut adalah tinggi badan sekelompok siswa. Tinggi cm Frekuensi $151 - 155$ 5 $156 - 160$ 20 $161 - 165$ $k$ $166 - 170$ 26 $171 - 175$ 7 Jika median data tersebut 163,5 maka nilai $k$ adalah . . . . A. 40 B. 42 C. 44 D. 46 E. 48Median telah diketahui 163,5 dan terletak pada interval kelas $161 - 165$, dengan demikian seluruh data yang kita butuhkan sudah tersedia. $n = 58 + k$ β Jumlahkan seluruh frekuensi. $\dfrac12n = 29 + \dfrac12k$ $L_2 = 160,5$ β Tepi bawah kelas, yaitu nilai bawah kelas dikurangi $0,5$. $f_{k2} = 5 + 20 = 25$ β Jumlah seluruh frekuensi diatas kelas median. $f_2 = k$ β Frekuensi kelas median. $c = 165,5 - 160,5 = 5$ β Panjang kelas. $Me = Q_2 = L_2 + \dfrac{\dfrac12n - f_{k2}}{f_2}.c$ $163,5 = 160,5 + \dfrac{\left29 + \dfrac12k - 25\right}{k}.5$ $163,5 - 160,5 = \dfrac{\left4 + \dfrac12k\right}{k}.5$ $3 = \dfrac{20 + \dfrac52k}{k}$ $3k = 20 + \dfrac52k$ $\dfrac12k = 20$ $k = 40$ jawab A. 34. Statistika UM UGM 2017 MdasSekumpulan bilangan mempunyai rata-rata 15 dengan jangkauan 6. Jika setiap bilangan tersebut dikurangi $a$ kemudian hasilnya dibagi $b$ akan menghasilkan bilangan baru dengan rata-rata 7 dan jangkauannya 3. Nilai $a$ dan $b$ berturut-turut adalah . . . . A. 3 dan 2 B. 2 dan 3 C. 1 dan 2 D. 2 dan 1 E. 3 dan 1Misalkan bilangan-bilangan tersebut adalah $x_1, x_2, x_3, \cdots, x_n$ Jangkauan $x_n - x_1 = 6$ . . . . 1 $\dfrac{x_1 + x_2 + x_3 + \cdots + x_n}{n} = 15$ $x_1 + x_2 + x_3 + \cdots + x_n = 15n$ . . . . * Setiap bilangan dikurangi $a$ kemudian hasilnya dibagi $b$, bilangan-bilangan menjadi $\dfrac{x_1 - a}{b}, \dfrac{x_2 - a}{b}, \dfrac{x_3 - a}{b}, \cdots, \dfrac{x_n - a}{b}$ Rata-rata $\dfrac{\dfrac{x_1 - a}{b} + \dfrac{x_2 - a}{b} + \dfrac{x_3 - a}{b} + \cdots + \dfrac{x_n - a}{b}}{n} = 7$ $\dfrac{x_1 + x_2 + x_3 + \cdots + x_n - na}{bn} = 7$ $x_1 + x_2 + x_3 + \cdots + x_n - na= 7bn$ . . . . ** Dari * dan ** $15n - na = 7nb$ $15 - a = 7b$ $a + 7b = 15$ . . . . *** Jangkauan $\dfrac{x_n - a}{b} - \dfrac{x_1 - a}{b} = 3$ $\dfrac{x_n - a - x_1 + a}{b} = 3$ $x_n - x_1 = 3b$ . . . . 2 Eliminasi persamaan 1 dan 2 $x_n - x_1 = 6$ $x_n - x_1 = 3b$ - - $6 - 3b = 0$ $6 = 3b$ $b = 2$ Masukkan $b = 2$ ke persamaan *** $a + = 15$ $a = 1$ jawab C. 35. Statistika UM UGM 2016Nilai rata-rata Bahasa Inggris dalam suatu kelas yang terdiri dari 14 siswa adalah 6. Satu siswa memperoleh nilai tertinggi dan satu siswa lain memperoleh nilai terendah. Nilai rata-rata tanpa nilai tertinggi dan terendah juga sama dengan 6. Jika nilai terendahnya adalah $b$, maka selisih nilai tertinggi dan terendah adalah . . . . $A.\ 10 - b$ $B.\ 12 - 2b$ $C.\ 18 - 3b$ $D.\ 20 - 4b$ $E.\ 3b - 4$Jumlah seluruh nilai $= = 84$ Rata-rata tanpa nilai tertinggi dan terendah $\overline {x} = \dfrac{84 - T - R}{12}$ $6 = \dfrac{84 - T - b }{12}$ $72 = 84 - T - b$ $T = 12 - b$ Selisih nilai tertinggi dan terendah $S = T - R$ $= 12 - b - b$ $= 12 - 2b$ jawab B. Demikianlah soal dan pembahasan tentang statistika, semoga bermanfaat. Selamat belajar! Disusun oleh Joslin Sibarani Alumni Teknik Sipil ITB
Sepertidiketahui, industri ini memiliki potensi untuk tumbuh lebih baik serta menjadi salah satu penopang perekonomian masyarakat. Komitmen tersebut dibuktikan melalui kerja sama antara BRI Group dengan Broom, startup ekosistem otomotif di Indonesia. Penandatanganan perjanjian kerja sama oleh BRI Group terdiri dari Bank BRI, BRI Finance,
Metode Statistika II Β» Pengujian Hipotesis βΊ Uji Hipotesis Rata-Rata Satu Populasi Pengujian Hipotesis Terdapat dua kondisi yang perlu diperhatikan dalam pengujian hipotesis rata-rata satu populasi yakni ketika varians dari populasi diketahui dan ketika varians populasi tidak diketahui. Oleh Tju Ji Long Statistisi Pada artikel ini kita akan membahas pengujian hipotesis untuk rata-rata satu populasi. Terdapat dua kondisi yang perlu diperhatikan yakni ketika varians dari populasi diketahui variance known dan ketika varians populasi tidak diketahui variance unknown. Varians Diketahui Variance Known Misalkan diberikan suatu populasi yang variansnya \^2\ diketahui. Sekarang kita ingin menguji hipotesis bahwa rata-rata populasinya \ΞΌ\ sama dengan nilai tertentu \ΞΌ_0\ lawan hipotesis alternatifnya bahwa rata-rata populasinya itu tidak sama dengan \ΞΌ_0\. Dengan kata lain, kita ingin menguji Statistik uji yang dapat digunakan dalam hal ini adalah peubah acak \\overline{X}\. Dengan mengambil tingkat signifikansi sebesar \Ξ±\, kita dapat menemukan dua nilai kritis \\overline{x}_1\ dan \\overline{x}_2\ sedemikian sehingga \\overline{x}_1β€\overline{x}β€\overline{x}_2\ merupakan wilayah penerimaan, dan kedua ekor sebarannya, \\overline{x} \overline{x}_2\, menyusun wilayah kritisnya. Perhatikan bahwa kita biasanya melakukan transformasi \\overline{X}\ ke dalam bentuk statistik uji \Z\ sehingga nilai kritis itu dapat dinyatakan dalam nilai \z\ melalui transformasi berikut Dengan demikian, untuk tingkat signifikansi sebesar \Ξ±\, kedua nilai kritis \z\ padanan bagi \\overline{X}_1\ dan \\overline{X}_2\, yakni perhatikan Gambar 1 Gambar 1 Jadi, dari populasi tersebut diambil sebuah sampel acak berukuran \n\ dan dihitung rata-rata sampelnya \\overline{x}\. Bila \\overline{x}\ jatuh dalam wilayah penerimaan \\overline{x}_1β€\overline{x}β€\overline{x}_2\, maka akan jatuh dalam wilayah \-z_{Ξ±/2} 2,575\, sedangkan dalam hal ini Perhitungan \\bar{x}= 7,8\ kilogram, \n = 50\, sehingga Keputusan Tolak Ho dan simpulkan bahwa rata-rata kekuatan batang pancing tidak sama dengan 8. Contoh 2 Satu Arah Suatu sampel acak 100 catatan kematian di Amerika Serikat selama tahun lalu menunjukkan umur rata-rata 71,8 tahun, dengan simpangan baku 8,9 tahun. Apakah ini menunjukkan bahwa harapan umur sekarang ini lebih dari 70 tahun? Gunakan taraf nyata 0,05. Pembahasan Dengan mengikuti langkah-langkah dalam prosedur pengujian hipotesis, kita peroleh \H_0ΞΌ = 70\ tahun \H_1ΞΌ > 70\ tahun \Ξ± = 0,05\. Wilayah kritik \z > 1,645\ sedangkan dalam hal ini Perhitungan \\bar{x}= 71,8\ tahun, \ = s = 8,9\ tahun, dan Keputusan Tolak Ho dan simpulkan bahwa harapan umur sekarang ini memang lebih besar daripada 70 tahun Contoh 3 Satu Arah Waktu rata-rata yang diperlukan per mahasiswa untuk mendaftarkan diri pada semester ganjil di suatu perguruan tinggi adalah 50 menit dengan simpangan baku 10 menit. Suatu prosedur pendaftaran baru yang menggunakan mesin modern sedang dicoba. Bila suatu sampel acak 12 mahasiswa memerlukan waktu pendaftaran rata-rata 42 menit dengan simpangan baku 11,9 menit dengan menggunakan sistem baru tersebut, ujilah hipotesis bahwa nilai tengah populasinya sekarang kurang dari 50. Gunakan taraf nyata a 0,05, dan b 0,01. Asumsikan bahwa populasi waktu yang diperlukan adalah normal. Pembahasan Dengan mengikuti langkah-langkah dalam prosedur pengujian hipotesis, kita peroleh \H_0 ΞΌ = 50\ menit. \H_1 ΞΌ < 50\ menit a \Ξ± = 0,05\; b \Ξ± = 0,01\ Wilayah kritik a \t < -1,796\; b \t < -2,718\, sedangkan dalam hal ini dengan \v = 11\ derajat bebas. Perhitungan \\bar{x} = 42\ menit, \s = 11,9\ menit, dan \n = 12\. Dengan demikian, Keputusan Tolak Ho pada taraf nyata 0,05 tetapi tidak pada taraf nyata 0,01. Pada hakekatnya ini berarti bahwa nilai tengah sebenarnya kemungkinan besar memang lebih kecil daripada 50 menit, tetapi perbedaannya tidak cukup besar untuk mengimbangi biaya yang tinggi untuk mengoperasikan sebuah komputer. Sumber Walpole, et al. 2012. Probability & Statistics for Engineers & Scientists, 9th ed. Boston Pearson Education, Inc.
Jawablahdengan mengunakan: β=βsama dengan β>βlebih dari β
Unduh PDF Unduh PDF Meskipun mudah untuk mengurutkan bilangan cacah seperti 1, 3, dan 8 berdasarkan nilainya, secara sekilas, pecahan mungkin sulit untuk diurutkan. Jika setiap angka di bagian bawahnya, atau penyebut, sama besar, kamu bisa mengurutkannya seperti bilangan cacah, seperti 1/5, 3/5, dan 8/5. Kalau tidak, kamu harus mengubah pecahanmu sehingga memiliki penyebut yang sama, tanpa mengubah nilainya. Hal ini semakin mudah dilakukan dengan banyak berlatih, dan kamu juga bisa mempelajari beberapa trik saat membandingkan dua pecahan saja, atau saat mengurutkan pecahan dengan pembilang yang lebih besar seperti 7/3. 1 Temukan penyebut yang sama besar untuk semua pecahan. Gunakan salah satu cara berikut untuk mencari penyebut, atau angka di bagian bawah pecahan, yang bisa kamu gunakan untuk mengubah semua pecahan, sehingga kamu bisa membandingkannya dengan mudah. Angka ini disebut penyebut yang sama, atau penyebut terkecil yang sama jika merupakan angka terkecil yang memungkinkan [1] Kalikan setiap penyebut yang berbeda. Misalnya, kamu membandingkan 2/3, 5/6, dan 1/3, kalikan dua penyebut yang berbeda 3 x 6 = 18. Ini adalah cara yang sederhana, tetapi sering menghasilkan bilangan yang lebih besar dari cara yang lain, sehingga sulit untuk diselesaikan. Atau buatlah daftar kelipatan setiap penyebut dalam kolom yang berbeda, hingga kamu menemukan bilangan yang sama yang muncul di setiap kolom. Gunakan bilangan ini. Misalnya, membandingkan 2/3, 5/6, dan 1/3, buatlah daftar kelipatan 3 3, 6, 9, 12, 15, 18. Kemudian kelipatan 6 6, 12, 18. Karena 18 muncul di kedua daftar, gunakan bilangan tersebut. Kamu juga bisa menggunakan 12, tetapi cara ini akan menggunakan 18. 2 Ubahlah setiap pecahan sehingga memiliki penyebut yang sama. Ingat, jika kamu mengalikan angka atas dan bawah pecahan dengan bilangan yang sama, nilai pecahan akan tetap sama. Gunakan teknik ini pada setiap pecahan satu per satu sehingga setiap pecahan memiliki penyebut yang sama. Cobalah untuk 2/3, 5/6, dan 1/3, menggunakan penyebut yang sama, 18 18 Γ· 3 = 6, jadi 2/3 = 2x6/3x6=12/18 18 Γ· 6 = 3, jadi 5/6 = 5x3/6x3=15/18 18 Γ· 3 = 6, jadi 1/3 = 1x6/3x6=6/18 3Gunakan bilangan atas untuk mengurutkan pecahan. Karena semua pecahan sudah memiliki penyebut yang sama, kamu akan mudah membandingkannya. Gunakan angka atasnya atau pembilang untuk mengurutkan dari yang terkecil hingga terbesar. Mengurutkan pecahan yang kita temukan di atas, kita mendapatkan 6/18, 12/18, 15/18. 4 Kembalikan setiap pecahan ke bentuk awalnya. Biarkan saja urutan pecahan, tetapi kembalikan ke bentuk awalnya. Kamu bisa melakukannya dengan mengingat-ingat perubahan pecahan, atau dengan membagi bilangan atas dan bawah pecahan lagi 6/18 = 6 Γ· 6/18 Γ· 6 = 1/3 12/18 = 12 Γ· 6/18 Γ· 6 = 2/3 15/18 = 15 Γ· 3/18 Γ· 3 = 5/6 Jawabannya adalah "1/3, 2/3, 5/6" Iklan 1Tuliskan kedua pecahan bersebelahan. Misalnya, bandingkan pecahan 3/5 dan 2/3. Tuliskan keduanya bersebelahan 3/5 di kiri dan 2/3 di kanan. 2 Kalikan bilangan atas pecahan pertama dengan bilangan bawah pecahan kedua. Dalam contoh kita, bilangan atas atau pembilang dari pecahan pertama 3/5 adalah 3. Angka bawah atau penyebut dari pecahan kedua 2/3 juga adalah 3. Kalikan keduanya 3 x 3 = ? Cara ini disebut perkalian silang karena kamu mengalikan bilangan secara diagonal satu sama lain. 3Tuliskan jawabanmu di sebelah pecahan pertama. Tuliskan hasil perkalianmu di sebelah pecahan pertama di halaman yang sama. Misalnya, 3 x 3 = 9, kamu akan menulis 9 di sebelah pecahan pertama, di sisi kiri halaman. 4Kalikan bilangan atas pecahan kedua dengan bilangan bawah pecahan pertama. Untuk mencari tahu pecahan yang lebih besar, kita harus membandingkan jawaban di atas dengan jawaban perkalian ini. Kalikan keduanya. Misalnya, untuk contoh kita membandingkan 3/5 dan 2/3, kalikan 2 x 5. 5Tuliskan jawabannya di sebelah pecahan kedua. Tuliskan jawaban hasil perkalian kedua ini di sebelah pecahan kedua. Dalam contoh ini, hasilnya adalah 10. 6 Bandingkan hasil perkalian silang keduanya. Jawaban dari perkalian ini disebut hasil perkalian silang. Jika salah satu hasil perkalian silang lebih besar dari yang lain, maka pecahan yang ada di sebelah hasil tersebut, lebih besar daripada pecahan yang lain. Dalam contoh kita, karena 9 lebih kecil dari 10, maka artinya 3/5 lebih kecil dari 2/3. Ingatlah, untuk selalu menuliskan hasil perkalian silang di sebelah pecahan yang pembilangnya kamu gunakan. 7 Pahami cara kerjanya. Untuk membandingkan dua pecahan, pada dasarnya, kamu mengubah pecahan agar memiliki penyebut atau bagian bawah pecahan yang sama. Inilah yang dilakukan perkalian silang! [2] Perkalian silang hanya melewati langkah menulis penyebutnya. Karena kedua pecahan akan memiliki nilai penyebut yang sama, kamu hanya perlu membandingkan kedua bilangan atasnya. Berikut contoh kita 3/5 vs 2/3, ditulis tanpa cara singkat perkalian silang 3/5=3x3/5x3=9/15 2/3=2x5/3x5=10/15 9/15 lebih kecil dari 10/15 Sehingga, 3/5 lebih kecil dari 2/3 Iklan 1 Gunakan cara ini untuk pecahan dengan pembilang yang sama atau lebih besar dari penyebutnya. Jika sebuah pecahan memiliki angka atas atau pembilang yang lebih besar dari angka bawah atau penyebut, nilainya lebih besar dari 1. Contoh pecahan ini adalah 8/3. Kamu juga bisa menggunakan cara ini untuk pecahan dengan pembilang dan penyebut yang sama, misalnya 9/9. Kedua pecahan ini adalah contoh pecahan tidak biasa.[3] Kamu masih dapat menggunakan cara lain untuk pecahan ini. Cara ini membantu pecahan terlihat lebih masuk akal, dan lebih cepat. 2 Ubahlah setiap pecahan biasa menjadi pecahan campuran. Ubahlah menjadi campuran bilangan cacah dan pecahan. Terkadang, kamu bisa membayangkannya di kepalamu. Misalnya, 9/9 = 1. Di waktu yang lain, gunakan pembagian yang panjang untuk menentukan berapa kali pembilang dapat dibagi dengan habis oleh penyebut. Jika ada sisa dari pembagian panjang tersebut, bilangan tersebut adalah sisa pecahan. Misalnya 8/3 = 2 + 2/3 9/9 = 1 19/4 = 4 + 3/4 13/6 = 2 + 1/6 3 Urutkan bilangan cacahnya. Sekarang, karena pecahan campuran sudah diubah, kamu bisa menentukan bilangan yang lebih besar. Untuk sementara, abaikan pecahannya, dan urutkan pecahan berdasarkan besar bilangan cacahnya 1 adalah yang terkecil 2 + 2/3 dan 2 + 1/6 kita belum tahu pecahan mana yang lebih besar 4 + 3/4 adalah yang terbesar 4 Jika perlu, bandingkan pecahan dari setiap kelompok. Jika kamu memiliki beberapa pecahan campuran dengan bilangan cacah yang sama, misalnya 2 + 2/3 dan 2 + 1/6, bandingkan bagian pecahannya untuk menentukan pecahan yang lebih besar. Kamu bisa menggunakan cara manapun di bagian lain untuk melakukannya. Berikut adalah contoh membandingkan 2 + 2/3 dan 2 + 1/6, membuat penyebut kedua pecahan sama besar 2/3 = 2x2/3x2 = 4/6 1/6 = 1/6 4/6 lebih besar dari 1/6 2 + 4/6 lebih besar dari 2 + 1/6 2 + 2/3 lebih besar dari 2 + 1/6 5Gunakan hasilnya untuk mengurutkan semua bilangan campuran. Jika kamu sudah mengurutkan pecahan dalam setiap kelompok bilangan campurannya, kamu bisa mengurutkan semua bilanganmu 1, 2 + 1/6, 2 + 2/3, 4 + 3/4. 6Ubahlah bilangan campuran ke bentuk pecahan awalnya. Biarkan urutannya tetap sama, tetapi ubahlah menjadi bentuk awalnya dan tuliskan bilangan dalam pecahan biasa 9/9, 8/3, 13/6, 19/4. Iklan Jika pembilangnya semua sama, kamu bisa mengurutkan penyebutnya secara terbalik. Misalnya, 1/8 < 1/7 < 1/6 < 1/5. Bayangkan seperti piza jika awalnya kamu memiliki 1/2 kemudian menjadi 1/8, kamu membagi piza menjadi 8 bagian bukan 2, dan setiap 1 potongan yang kamu dapatkan lebih sedikit. Saat mengurutkan pecahan dengan bilangan yang besar, membandingkan dan mengurutkan sekelompok kecil angka yang terdiri dari 2, 3, atau 4 bilangan pecahan mungkin akan membantu. Meskipun mencari penyebut terkecil yang sama memang membantu agar kamu dapat menyelesaikan soal dengan bilangan yang lebih kecil, sebenarnya penyebut berapa pun yang sama bisa digunakan. Cobalah mengurutkan 2/3, 5/6, dan 1/3 menggunakan penyebut 36, dan perhatikan apakah jawabaannya sama. Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?Jakarta(ANTARA) - PT Pfizer Indonesia pada Rabu menandatangani nota kesepahaman (MoU) dengan PT Lippo General Insurance Tbk (LPGI) bertujuan untuk menyelenggarakan program peningkatan literasi keuangan dan kesehatan masyarakat Indonesia. Kedua belah pihak akan fokus menjalin kerja sama selama dua tahun terkait program/kegiatan
Unduh PDF Unduh PDF Dalam geometri, sudut adalah ruang antara 2 sinar atau segmen garis dengan titik ujung yang sama alias verteks. Cara paling umum untuk mengukur sudut adalah menggunakan satuan derajat, dan satu lingkaran penuh memiliki sudut 360 derajat. Anda bisa menghitung besar satu sudut dalam suatu poligon jika mengetahui bentuk segi banyak tersebut dan besar sudut-sudut lainnya, atau dalam kasus segitiga siku-siku, jika Anda mengetahui panjang dua sisinya. Sebagai tambahan, Anda bisa mengukur sudut menggunakan busur atau menghitungnya memakai kalkulator grafik. 1 Hitung jumlah sisi dalam poligon. Untuk bisa menghitung besar sudut interior poligon, pertama-tama Anda perlu menentukan banyaknya sisi yang dimiliki poligon tersebut. Ketahui bahwa jumlah sisi poligon sama dengan jumlah sudutnya.[1] Sebagai contoh, segitiga memiliki 3 sisi dan 3 sudut interior, sementara persegi memiliki 4 sisi dan 4 sudut interior. 2 Temukan besar total semua sudut interior poligon. Rumus untuk menemukan ukuran total semua sudut dalam poligon adalah n β 2 x 180. Dalam kasus ini, n adalah jumlah sisi yang dimiliki poligon. Total ukuran sudut dalam beberapa poligon umum adalah sebagai berikut[2] Total sudut dalam segitiga poligon bersisi 3 adalah 180 derajat. Total sudut dalam segiempat poligon bersisi 4 adalah 360 derajat. Total sudut dalam segilima poligon bersisi 5 adalah 540 derajat. Total sudut dalam segienam poligon bersisi 6 adalah 720 derajat. Total sudut dalam segitiga poligon bersisi 7 adalah 1080 derajat. 3 Bagikan ukuran sudut total dari semua poligon teratur dengan jumlah sudutnya. Poligon teratur adalah poligon yang panjang semua sisinya sama sehingga semua besar sudutnya pun sama. Sebagai contoh, besar setiap sudut dalam segitiga sama sisi adalah 180 Γ· 3, atau 60 derajat, dan besar setiap sudut dalam persegi adalah 360 Γ· 4, atau 90 derajat.[3] Segitiga sama sisi dan persegi adalah contoh poligon teratur, sementara Pentagon di Washington, Amerika Serikat, adalah contoh segilima teratur, dan rambu berhenti adalah contoh oktagon/segidelapan teratur. 4 Kurangkan besar total sudut poligon dengan jumlah semua sudut yang diketahui untuk mencari besar sudut di poligon tidak teratur. Kalau poligon tidak memiliki panjang sisi dan besar sudut yang sama, Anda hanya perlu menjumlahkan semua sudut yang diketahui dalam poligon tersebut. Kemudian, kurangkan total besar sudut poligon terkait dengan jumlah semua sudut yang diketahui untuk menemukan besar sudut yang belum diketahui.[4] Sebagai contoh, jika Anda mengetahui bahwa 4 sudut dalam pentagon masing-masing adalah 80, 100, 120, dan 140 derajat, jumlahkan semuanya untuk memperoleh 440. Kemudian, kurangkan angka tersebut dari total besar sudut sebuah pentagon, yaitu 540 derajat 540 β 440 = 100 derajat. Jadi, besar sudut yang tersisa adalah 100 derajat. Tip Sebagian poligon memiliki βcara pintasβ untuk membantu Anda mengukur sudut yang tidak diketahui. Segitiga sama kaki adalah segitiga yang panjang dua sisinya sama dan memiliki 2 sudut yang besarnya sama. Paralelogram adalah segiempat dengan panjang sisi-sisi berseberangan sama dan memiliki besar sudut-sudut yang berseberangan secara diagonal juga sama. Iklan 1Ingat bahwa dalam setiap segitiga siku-siku hanya ada satu sudut yang besarnya sama dengan 90 derajat. Secara definisi, sudut siku-siku selalu memiliki besar sama dengan 90 derajat, bahkan jika tidak diberi label. Jadi, Anda akan selalu mengetahui besar minimal satu sudut dan bisa menggunakan trigonometri untuk mencari besar kedua sudut lainya.[5] 2Ukur panjang dua sisi segitiga. Sisi terpanjang segitiga disebut βhipotenusa.β Sisi βsampingβ adalah sisi yang berada di sebelah sudut yang ingin dicari besarnya. Sisi βdepanβ adalah sisi yang berada di depan sudut yang dicari. Ukur kedua sisi ini sehingga Anda bisa menentukan ukuran sudut yang tersisa dalam segitiga.[6] Tip Anda bisa menggunakan kalkulator grafik untuk menyelesaikan persamaan atau mencari tabel daring yang mendaftarkan nilai-nilai beragam sinus, cosinus, dan tangen. 3 Gunakan fungsi sinus jika Anda mengetahui panjang sisi depan dan hipotenusa. Masukkan angka ke persamaan sinus x = depan Γ· hipotenusa. Katakan panjang sisi depan adalah 5 dan panjang hipotenusa adalah 10. Bagikan 5 dengan 10, yaitu sama dengan 0,5. Sekarang Anda mengetahui bahwa sinus x = 0,5 yaitu sama dengan x = sinus-1 0,5.[7] Kalau Anda memiliki kalkulator grafik, cukup tikkan 0,5 dan tekan sinus-1. Jika Anda tidak memiliki kalkulator grafik, gunakan bagan daring untuk menemukan nilainya. Anda akan menemukan bahwa x = 30 derajat 4 Gunakan fungsi cosinus jika mengetahui panjang sisi samping dan hipotenusa. Untuk soal semacam ini, gunakan persamaan cosinus x = sisi samping Γ· hipotenusa. Kalau panjang sisi samping adalah 1,666 dan panjang hipotenusa adalah 2,0, bagikan 1,666 dengan 2, yang sama dengan 0,833. Jadi, cosinus x = 0,833 atau x = cosinus-1 0,833.[8] Masukkan 0,833 ke kalkulator grafik dan tekan tombol cosinus-1. Kalau tidak, carilah di bagan nilai cosinus. Jawabannya adalah 33,6 derajat. 5 Gunakan fungsi tangen jika mengetahui panjang sisi depan dan samping. Persamaan untuk fungsi tangen adalah tangen x = depan Γ· samping. Katakan Anda mengetahui panjang sisi depan adalah 75 dan panjang sisi samping adalah 100. Bagikan 75 dengan 100, yaitu 0,75. Artinya, tangen x = 0,75, yang sama dengan x = tangen-1 0,75.[9] Cari nilai dalam bagan tangen atau tekan 0,75 pada kalkulator grafik, lalu tangen-1. Nilainya sama dengan 36,9 derajat. Iklan Sudut diberi nama berdasarkan besar ukurannya. Seperti yang disebutkan di atas, sudut siku-siku memiliki besar 90 derajat. Sudut yang besarnya kurang dari 90 tetapi lebih dari 0 derajat dinamakan sudut lancip. Sudut yang ukurannya lebih dari 90 derajat dan kurang dari 180 derajat dinamakan sudut tumpul. Sudut dengan besar 180 derajat dinamakan sudut lurus, sementara sudut yang lebih dari 180 derajat dinamakan sudut refleks. Dua sudut yang jika dijumlahkan menghasilkan 90 derajat dinamakan sudut komplementer kedua sudut selain sudut siku-siku dalam segitiga siku-siku adalah sudut komplementer. Dua sudut yang jika ditambahkan berjumlah 180 derajat dinamakan sudut suplementer. Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?
LabaToyota anjlok di tengah kekacauan rantai pasokan, kenaikan biaya it-infoBentuk-bentuk persamaan logaritma ada apa aja, ya? Terus, gimana cara menyelesaikannya? Yuk, simak penjelasannya dalam artikel berikut! β Kalian pasti udah tau dong, kalo gempa itu adalah gelombang atau getaran yang merambat dan aktivitasnya bisa direkam pakai seismograf? Nah, tapi kamu tau nggak sih, gimana caranya seseorang menentukan intensitas gempa? Jadi, intensitas gempa itu bisa diukur dengan skala richter. Skala ini menggunakan prinsip dari logaritma dengan basis 10. Sebenarnya, masih banyak sih, contoh penerapan prinsip logaritma yang lainnya, misalnya taraf intensitas bunyi, mengukur pH atau tingkat asam suatu zat, dan lain sebagainya. Nah, pas banget nih, sama materi yang bakal kita bahas kali ini, yaitu persamaan logaritma. Untuk materi logaritmanya sendiri, mungkin rata-rata dari kalian belum pernah belajar ya, waktu di SMP dulu. Tapi, walaupun materi ini baru kalian temuin di SMA, materinya seru dan nggak susah kok! Sebelum kita ke pembahasan persamaan logaritma, make sure kamu harus udah paham konsep awal logaritma. Tapi, kalo kamu masih belum jelas, coba kamu check artikel tersebut, ya. Oke, kalo gitu langsung aja kita mulai pembahasan persamaan logaritma! Pengertian Persamaan Logaritma Persamaan logaritma adalah persamaan yang memuat bentuk logaritma dengan basis atau numerus, atau keduanya memuat variabel. Jadi maksudnya, ada dua bentuk logaritma di ruas kiri dan kanan dimana basis atau numerus atau keduanya memuat variabel, kemudian kedua ruas ini dihubungan dengan tanda sama dengan. Nilai x yang memenuhi persamaan ini disebut dengan penyelesaian dari persamaan tersebut. Sebelumnya, masih inget kan sama bentuk umum logaritma yang ini alog x = n a = basis atau bilangan pokok, dengan syarat a > 0 dan aβ 1x = numerus, dengan syarat x > 0n = nilai logaritma Terus, kalau persamaan logaritma bentuknya gimana ya? Bentuknya sama seperti bentuk umum logaritma, tapi pada persamaan logaritma, bentuk logaritmanya ada dua di ruas kiri dan kanan lalu dihubungkan menggunakan tanda sama dengan. Contohnya seperti ini, nih 3log 2x+9 = 3log 10x β 16 Nanti kita akan bahas lebih lanjut ya, gimana caranya untuk mendapatkan nilai x yang memenuhi persamaan tersebut. Tapi sebelum itu, kita bahas bentuk-bentuk persamaan logaritma dulu, ya! Bentuk-Bentuk Persamaan Logaritma Nggak jauh beda dari materi eksponen, persamaan logaritma juga punya beberapa bentuk yang bikin kamu lebih gampang untuk mengidentifikasi nilai peubahnya. Nah, ini dia bentuk-bentuk persamaan logaritma Wah, keliatannya ribet ya. Tapi padahal nggak sesusah itu kok. Sederhananya, logaritma memiliki enam bentuk seperti yang bisa kamu lihat pada gambar di atas. Bentuk Pertama Sekarang kita coba bahas mulai dari bentuk yang pertama, yaitu alog fx = alog n. Coba perhatikan gambar berikut! Nah, supaya kamu lebih paham, kita langsung masuk ke contoh soal ya, sekalian kita belajar gimana cara menyelesaikan persamaannya. Contoh soal Tentukan nilai x yang memenuhi persamaan logaritma berikut ini 3log 3x+6 = 3log 9 2log x+9 = 5 Jawab a. 3log 3x+6 = 3log 9 Karena basis dari logaritmanya nilainya sama, maka nilai numerusnya juga akan sama. Sehingga bisa kita tulis seperti berikut Kemudian, kita bisa uji numerus, jadi kita substitusi x = 1 ke 3x + 6. 3x + 6 = 31 + 6 = 9 Nah, ketemu nih, hasilnya adalah 9, di mana 9 > 0, maka syarat numerus fx > 0 terpenuhi. Jadi, penyelesaian 3log 3x+6 = 3log 9 adalah x = 1. b. 2log x+9 = 5 Nah, untuk menyelesaikan persamaan ini, kita ubah ruas kanan ke bentuk logaritma terlebih dahulu, dengan memilih nilai basis yang sama dengan ruas kiri, dan memanfaatkan sifat alog bc = c alog b. Maka menjadi seperti berikut 2log x+9 = 5 x 2log 2 2log x+9 = 2log 25 5 kita pindah sebagai pangkat dan ini nggak mengubah nilai, hanya mengubah bentuknya aja Lanjut, kita uji numerus, x+9 = 23 + 9 = 32, karena 32 > 0, maka syarat terpenuhi. Jadi, nilai x yang memenuhi persamaan 2log x+9 = 5 adalah 23. Sekarang kita lanjut ke bentuk persamaan logaritma yang kedua, yuk! Bentuk Kedua Bentuk persamaan logaritma yang kedua, hampir sama dengan bentuk yang pertama tadi, tapi numerusnya berbeda. Kita langsung kerjakan contoh soal, ya! Contoh soal Tentukan nilai x yang memenuhi persamaan log x2 β 2x β 15 = log x + 3! Jawab Nah, sampai disini kita bisa uji syarat numerus. Untuk x = β 3 fx = x2 β 2x -15 = -32 β 2- 3 -15 = 0gx = x2 + 3 = -32+3 = 12 Walau gx > 0 tapi fx = 0, jadi x = -3 tidak memenuhi persamaan logaritma ini. Lanjut untuk x = 6. Untuk x = 6fx = x2-2x-15 = 62-26-15 = 9gx = x2+3= 62+3 = 39 Memenuhi karena fx dan gx > 0. Jadi, nilai x yang memenuhi persamaan log x2-2x-15 = log x+3 adalah x = 6. Sekarang, lanjut ke bentuk ketiga! Bentuk Ketiga Untuk bentuk persamaan logaritma yang ketiga, bentuknya adalah seperti infografik di bawah ini. Coba perhatikan! Di persamaan ketiga ini numerusnya sama, tapi basisnya berbeda. Contoh soal Tentukan nilai x yang memenuhi persamaan 2log 5x-9 = 5log 5x-9! Jawab Karena numerus sama yaitu 5x β 9 dan kedua basis nilainya lebih dari 0, berarti sudah dipastikan numerus = 1. Kita bisa melakukan uji numerus, 5x β 9 = 52 β 9 = 1 di mana 1 > 0 dan syarat terpenuhi. Penyelesaian dari 2log5x-9 = 5log5x-9 persamaan adalah x = 2. Gimana seru kann? yuk kita bahas bentuk selanjutnya! Bentuk Keempat Oke guys, kita udah sampai di bentuk persamaan logaritma yang keempat. Perhatikan infografik di bawah. Persamaan ini hampir mirip kayak bentuk persamaan nomor 2. Bedanya, basis sama numerus punya variabel, tapi basis di kiri dan kanan tetap sama ya, kaya gini nih! Contoh soal Tentukan nilai x yang memenuhi persamaan x-1log x2-16 = x-1log 5x-2! Jawab kemudian kita faktorkan x β 7 x + 2 diperoleh x = 7 dan x = -2 Lalu kita uji syarat basis dan numerusnya, agar lebih mudah kita pakai tabel aja ya. Karena x = 7 menghasilkan numerus x2 β 7 dan 5x -2 yang lebih dari 0, kemudian basis x-1 yang lebih dari 0 dan tidak sama dengan 1, maka hanya x = 7 yang memenuhi syarat logaritmanya. Jadi, penyelesaian dari persamaan ini adalah x = 7. Bentuk Kelima Nah, untuk bentuk kelima, kamu bisa perhatikan infografik berikut. Jangan lupa perhatikan syaratnya juga, ya! Untuk bentuk kelima ini, tipenya seperti bentuk yang sebelumnya memiliki variabel di numerus dan basis, tapi basis di kiri dan kanan berbeda. Contoh soal Tentukan penyelesaian persamaan x+3log x2-5 = 2x-1log x2-5! Jawab Lanjut kita uji syarat basis dan numerusnya, ya! Uji Basis Uji NumerusMemenuhi syarat karena numerus > 0 Saat x2 β 5 = 1, maka x = Β±β6Tapi, yang memenuhi hanya β6 saja karena hanya nilai β6 yang memenuhi syarat basis dan numerus. Oke, kita udah dapet nih, penyelesaian persamaan x+3log x2-5 = 2x-1log x2-5 yaitu x = 4. Bentuk Keenam Bentuk keenam atau bentuk terakhir ini agak berbeda dari persamaan sebelumnya ya, karena bentuk persamaan logaritma ini membentuk persamaan kuadrat. Perhatikan infografik berikut ini ya Supaya kamu bisa nyelesain persamaan yang dikasih, tugas kamu harus memisalkan logaritma jadi bentuk. Nah, dari permisalan itu, kamu bakal dapet bentuk persamaan kuadratnya. Contoh soal Tentukan penyelesaian persamaan 3log2 x β 3log x3 β 4 = 0! Jawab Walau dari bentuk umum tandanya plus, tapi kita bisa menjumpai soal yang tandanya minus seperti halnya persamaan kuadrat, 3log2 x β 3log x3 β 4 = 0 bisa juga ditulis dengan 3log2 x+ -3log x3 + -4 Jadi, gak ada masalah ya untuk tanda plus dan minus, yang penting kamu fokus di basis dan numerusnya. Oke, supaya kita dapet nilai x-nya, langsung aja kita substitusi nilai y ke permisalan. Wahhh, akhirnya selesai juga nih bahasan kita tentang bentuk-bentuk persamaan logaritma dan cara menyelesaikannya. Sekarang kamu udah lebih ngerti, kan? Intinya, kamu harus mengingat syarat-syarat dari masing-masing bentuk. Jangan sampai tertukar! Oh ya, setelah baca ini jangan langsung bobo yaa hehehe, karena kamu harus banget latihan soal di ruangbelajar. Pemahaman kamu tentang persamaan logaritma ini bakal lebih keren lagi deh, karena fitur di ruangbelajar lengkap banget, mulai dari latihan soal yang selalu update dan juga pembahasan yang asik plus mudah dimengerti dari Master Teacher. So, tunggu apalagi? Yuk, ke ruangbelajar! Referensi Sinaga, B. 2014. Matematika SMA/MA Kelas X Semester 1. Jakarta Pusat Perbukuan, Departemen Pendidikan Nasional. Artikel ini telah diperbarui pada 28 September 2021.Jikadibandingkan dengan panther maupun kijang, dari segi mesin Kuda lebih unggul. Namun dari segi konsumsi BBM dan harga jual, kuda berada di bawah panther untuk versi diesel. Apabila kamu membeli mobil untuk penggunaan waktu yang lama, misalnya 6 - 10 tahun lebih, tidak ada salahnya memilih Mitsubishi Kuda.Unduh PDF Unduh PDF Dalam matematika, pemfaktoran adalah cara mencari bilangan-bilangan atau ekspresi-ekspresi yang jika dikalikan akan menghasilkan bilangan atau persamaan yang diberikan. Pemfaktoran adalah keterampilan yang berguna untuk dipelajari untuk menyelesaikan soal-soal aljabar sederhana; kemampuan untuk memfaktorkan dengan baik, menjadi penting saat menghadapi persamaan-persamaan kuadrat dan bentuk polinomial lainnya. Pemfaktoran dapat digunakan untuk menyederhanakan ekspresi aljabar untuk membuat penyelesaiannya lebih mudah. Pemfaktoran bahkan dapat memberikan Anda kemampuan untuk menghilangkan jawaban-jawaban tertentu yang mungkin, jauh lebih cepat daripada menyelesaikannya secara manual. 1 Pahami definisi pemfaktoran saat diterapkan pada bilangan-bilangan tunggal. Pemfaktoran adalah konsep yang sederhana, tetapi dalam praktiknya, dapat menjadi sesuatu yang menantang saat diterapkan pada persamaan-persamaan rumit. Oleh karena itu, paling mudah untuk melakukan pendekatan konsep pemfaktoran dengan mulai dari bilangan-bilangan sederhana, kemudian dilanjutkan ke persamaan-persamaan sederhana, sebelum akhirnya melanjutkan ke terapan yang lebih rumit. Faktor-faktor dari sebuah bilangan adalah bilangan-bilangan yang jika dikalikan akan menghasilkan bilangan tersebut. Misalnya, faktor dari 12 adalah 1, 12, 2, 6, 3, dan 4, karena 1 Γ 12, 2 Γ 6, dan 3 Γ 4 sama dengan 12. Cara lain untuk membayangkannya adalah bahwa faktor-faktor sebuah bilangan adalah bilangan-bilangan yang dapat membagi habis bilangan tersebut. Dapatkah Anda mencari semua faktor dari bilangan 60? Kita menggunakan bilangan 60 untuk beragam tujuan menit dalam satu jam, detik dalam satu menit, dst. karena dapat dibagi habis oleh cukup banyak bilangan-bilangan lain. Faktor dari 60 adalah 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, dan 60. 2 Pahami bahwa ekspresi-ekspresi variabel juga dapat difaktorkan. Sama seperti bilangan-bilangan sendiri yang dapat difaktorkan, variabel dengan koefisien bilangan juga dapat difaktorkan. Untuk melakukannya, carilah saja faktor-faktor koefisien variabelnya. Mengetahui cara memfaktorkan variabel sangat berguna untuk menyederhanakan persamaan-persamaan aljabar yang meliputi variabel tersebut. Misalnya, variabel 12x dapat ditulis sebagai hasil perkalian dari faktor-faktor 12 dan x. Kita dapat menulis 12x sebagai 34x, 26x, dst., menggunakan faktor-faktor mana pun dari 12 yang paling baik untuk tujuan kita. Kita bahkan dapat memfaktorkan 12x beberapa kali. Dengan kata lain, kita tidak harus berhenti di 34x atau 26x β kita dapat memfaktorkan 4x dan 6x untuk menghasilkan 322x dan 232x. Tentunya, dua ekspresi ini setara. 3 Terapkan sifat distributif perkalian untuk memfaktorkan persamaan-persamaan aljabar. Menggunakan pengetahuan tentang cara memfaktorkan baik bilangan-bilangan tunggal maupun variabel-variabel dengan koefisien, Anda dapat menyederhanakan persamaan aljabar sederhana dengan mencari faktor-faktor yang dimiliki oleh bilangan-bilangan dan variabel tersebut dalam persamaan alajabar. Biasanya, untuk menyederhanakan suatu persamaan, kita mencoba mencari faktor persekutuan terbesarnya. Proses penyederhanaan persamaan ini mungkin dilakukan karena sifat distributif perkalian, yang berlaku untuk bilangan a, b, dan c apa pun ab + c = ab + ac. Ayo coba sebuah contoh soal. Untuk memfaktorkan persamaan aljabar 12x + 6, pertama, ayo coba cari faktor persekutuan terbesar dari 12x dan 6. 6 adalah bilangan terbesar yang dapat membagi habis 12x dan 6, sehingga kita dapat menyederhanakan persamaannya menjadi 62x + 1. Proses ini juga berlaku pada persamaan-persamaan dengan bilangan negatif dan pecahan. Misalnya, x/2 + 4, dapat disederhanakan menjadi 1/2x + 8, dan -7x + -21 dapat difaktorkan menjadi -7x + 3. Iklan 1 Pastikan bahwa persamaan dalam bentuk kuadrat ax2 + bx + c = 0. Persamaan-persamaan kuadrat memiliki bentuk ax2 + bx + c = 0, dengan a, b, dan c sebagai konstanta bilangan dan tidak sama dengan 0 perhatikan bahwa a dapat sama dengan 1 atau -1. Jika Anda memiliki persamaan yang memiliki satu variabel x yang memiliki satu suku x pangkat dua atau lebih, Anda biasanya memindahkan suku-suku ini dalam persamaan menggunakan operasi aljabar sederhana untuk mendapatkan 0 di salah satu sisi tanda sama dengan dan ax2, dst. di sisi yang lain. Misalnya, ayo pikirkan persamaan aljabar. 5x2 + 7x - 9 = 4x2 + x - 18 dapat disederhanakan menjadi x2 + 6x + 9 = 0, yang merupakan bentuk kuadrat. Persamaan-persamaan dengan pangkat x yang lebih besar, seperti x3, x4, dst. bukanlah persamaan-persamaan kuadrat. Persamaan-persamaan ini adalah persamaan kubik, pangkat empat, dan seterusnya, kecuali persamaannya dapat disederhanakan untuk menghilangkan suku-suku x dengan pangkat lebih besar dari 2 ini. 2 Dalam persamaan kuadrat, dengan a = 1, difaktorkan menjadi x+d x+e, dengan d Γ e = c dan d + e = b. Jika persamaan kuadrat Anda dalam bentuk x2 + bx + c = 0 dengan kata lain, jika koefisien dari suku x2 = 1, mungkin tetapi tidak menjamin bahwa cara singkat yang cukup mudah dapat digunakan untuk memfaktorkan persamaan. Carilah dua bilangan yang jika dikalikan menghasilkan c dan dijumlahkan menghasilkan b. Setelah Anda mencari kedua bilangan d dan e ini, letakkan keduanya dalam ekspresi berikut x+dx+e. Kedua suku ini, jika dikalikan, menghasilkan persamaan kuadrat Anda β dengan kata lain, kedua suku ini adalah faktor-faktor persamaan kuadrat Anda. Misalnya, ayo pikirkan persamaan kuadrat x2 + 5x + 6 = 0. 3 dan 2 dikalikan menghasilkan 6 dan juga dijumlahkan menghasikan 5, sehingga kita dapat menyederhanakan persamaan ini menjadi x + 3x + 2. Sedikit perbedaan dalam cara singkat dasar ini terdapat pada perbedaan persamaannya sendiri Jika persamaan kuadrat dalam bentuk x2-bx+c, jawaban Anda dalam bentuk ini x - _x - _. Jika persamaan dalam bentuk x2+bx+c, jawaban Anda tampak seperti ini x + _x + _. Jika persamaan dalam bentuk x2-bx-c, jawaban Anda dalam bentuk x + _x - _. Catatan bilangan-bilangan dalam tempat kosong dapat berupa pecahan atau desimal. Misalnya, persamaan x2 + 21/2x + 5 = 0 difaktorkan menjadi x + 10x + 1/2. 3 Jika memungkinkan, faktorkan melalui pemeriksaan. Percaya atau tidak, untuk persamaan-persamaan kuadrat yang tidak rumit, salah satu cara memfaktorkan yang diperbolehkan adalah dengan memeriksa soal, kemudian mempertimbangkan jawaban-jawaban yang mungkin hingga Anda menemukan jawaban yang benar. Cara ini juga disebut dengan pemfaktoran melalui pemeriksaan. Jika persamaan dalam bentuk ax2+bx+c dan a>1, jawaban faktor Anda dalam bentuk dx +/- _ex +/- _, dengan d dan e adalah konstanta bilangan bukan nol yang jika dikalikan menghasilkan a. Baik d maupun e atau keduanya dapat berupa bilangan 1, meskipun tidak harus. Jika keduanya adalah 1, Anda pada dasarnya menggunakan cara singkat yang dideskripsikan di atas. Ayo pikirkan sebuah contoh soal. 3x2 - 8x + 4 awalnya terlihat sulit. Akan tetapi, setelah kita menyadari bahwa 3 hanya memiliki dua faktor 3 dan 1, persamaan ini menjadi lebih mudah karena kita tahu bahwa jawaban kita pasti dalam bentuk 3x +/- _x +/- _. Dalam hal ini, menambahkan -2 ke kedua tempat kosong memberikan jawaban yang benar. -2 Γ 3x = -6x dan -2 Γ x = -2x. -6x dan -2x dijumlahkan menjadi -8x. -2 Γ -2 = 4, sehingga kita bisa melihat bahwa suku-suku yang difaktorkan dalam tanda kurung jika dikalikan akan menghasilkan persamaan awal. 4 Selesaikan dengan melengkapi kuadrat. Dalam beberapa kasus, persamaan kuadrat dapat dengan cepat dan mudah difaktorkan menggunakan identitas aljabar khusus. Persamaan kuadrat apa pun dalam bentuk x2 + 2xh + h2 = x + h2. Jadi, jika dalam persamaan Anda, nilai b Anda dua kali akar kuadrat dari nilai c Anda, persamaan Anda dapat difaktorkan menjadi x + akar c2. Misalnya, persamaan x2 + 6x + 9 memiliki bentuk ini. 32 adalah 9 dan 3 Γ 2 adalah 6. Jadi, kita tahu bahwa bentuk faktor persamaan ini adalah x + 3x + 3, atau x + 32. 5 Gunakan faktor-faktor untuk menyelesaikan persamaan-persamaan kuadrat. Tanpa memperhatikan cara Anda memfaktorkan persamaan kuadrat Anda, setelah persamaannya difaktorkan, Anda dapat mencari jawaban-jawaban yang mungkin untuk nilai x dengan membuat setiap faktor sama dengan nol dan menyelesaikannya. Karena Anda mencari nilai x yang menyebabkan persamaan Anda sama dengan nol, nilai x yang membuat faktor manapun sama dengan nol, adalah jawaban yang mungkin untuk persamaan kuadrat Anda. Ayo kembali ke persamaan x2 + 5x + 6 = 0. Persamaan ini difaktorkan menjadi x + 3x + 2 = 0. Jika salah satu faktor sama dengan 0, semua persamaan sama dengan 0, sehingga jawaban-jawaban kita yang mungkin untuk x adalah bilangan-bilangan yang membuat x + 3 dan x + 2 sama dengan 0. Bilangan-bilangan ini masing-masing adalah -3 dan -2. 6 Periksa jawaban-jawaban Anda β beberapa jawabannya mungkin menyimpang! Saat Anda menemukan jawaban-jawaban yang mungkin untuk x, masukkan kembali ke dalam persamaan awal Anda untuk melihat jika jawabannya benar. Terkadang, jawaban yang Anda temukan tidak membuat persamaan awalnya sama dengan nol ketika dimasukkan kembali. Kita menyebut jawaban ini menyimpang dan mengabaikannya. Ayo masukkan -2 dan -3 ke dalam x2 + 5x + 6 = 0. Pertama, -2 -22 + 5-2 + 6 = 0 4 + -10 + 6 = 0 0 = 0. Jawaban ini benar, sehingga -2 adalah jawaban yang benar. Sekarang, ayo coba -3 -32 + 5-3 + 6 = 0 9 + -15 + 6 = 0 0 = 0. Jawaban ini juga benar, sehingga -3 adalah jawaban yang benar. Iklan 1 Jika persamaan dinyatakan dalam bentuk a2-b2, faktorkan menjadi a+ba-b. Persamaan-persamaan dengan dua variabel memiliki faktor yang berbeda dengan persamaan kuadrat dasar. Untuk persamaan a2-b2 apapun dengan a dan b tidak sama dengan 0, faktor-faktor persamaannya adalah a+ba-b. Misalnya, persamaan 9x2 - 4y2 = 3x + 2y3x - 2y. 2 Jika persamaan dinyatakan dalam bentuk a2+2ab+b2, faktorkan menjadi a+b2. Perhatikan bahwa, jika trinomial-nya dalam bentuk a2-2ab+b2, bentuk faktornya sedikit berbeda a-b2. Persamaan 4x2 + 8xy + 4y2 dapat ditulis ulang sebagai 4x2 + 2 Γ 2 Γ 2xy + 4y2. Sekarang, kita bisa melihat bahwa bentuknya sudah benar, sehingga kita bisa yakin bahwa faktor-faktor persamaan kita adalah 2x + 2y2 3 Jika persamaan dinyatakan dalam bentuk a3-b3, faktorkan menjadi a-ba2+ab+b2. Akhirnya, sudah disebutkan bahwa persamaan-persamaan kubik dan bahkan pangkat yang lebih tinggi, dapat difaktorkan, meskipun proses pemfaktorannya dengan cepat berubah menjadi sangat rumit. Misalnya, 8x3 - 27y3 difaktorkan menjadi 2x - 3y4x2 + 2x3y + 9y2 Iklan a2-b2 dapat difaktorkan, a2+b2 tidak dapat difaktorkan. Ingatlah cara memfaktorkan konstanta. Hal ini mungkin membantu. Hati-hati dengan pecahan dalam proses pemfaktoran dan kerjakan pecahan dengan benar dan hati-hati. Jika Anda memiliki trinomial dalam bentuk x2+bx+ b/22, bentuk faktornya adalah x+b/22. Anda mungkin akan menemui situasi ini saat melengkapkan kuadrat. Ingatlah bahwa a0=0 sifat hasil perkalian nol. Iklan Hal yang Anda Butuhkan Kertas Pensil Buku matematika jika perlu Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?sU4s6.